Safety Temperature Limiter STL 50
Certified to DIN EN 14597 (replaces DIN 3440) SIL2

Features
- For use as:
 - STB Protection - temperature limiter
 - ASTB Exhaust gas - protection - temperature limiter
 - STW Protection - temperature monitor
- Certified according to EN 61508 SIL2
- Input Pt100, 3-wire circuit or double thermocouple J, K, N and S
- Temperature limit value and switching hysteresis programmable
- Basic accuracy < 0.5%, ±2 digits
- Reaction time ≤ 0.5 sec
- Alarm output 1 relay, SPDT
- Memory function for error report
- Operation-lock feature (password protection)
- Case for TS35 DIN rail mounting

General
The STL50 safety temperature limiter is used where ever thermal processes must be monitored and the system must be transferred into a safe operational state in case of fault. If the permissible temperature limit value is reached, or if a fault occurs within the permissible temperature range on the monitoring equipment (sensor open, sensor short-circuit, failure of a component part in the device, fault in the software, failure or inadmissible value of the Supply voltage etc.), the STL50 switches off without delay.

The alarm contact is activated, the LED ALARM on the front panel and the backlighting of the display light up, and the error cause is indicated as plain text on the display.
In addition, there is a 24 V DC signal present on the terminals 17-18 for an external alarm signal.

Brief description
Programming The device is programmed using the front-sided buttons, in connection with the graphics display.
Operating modes The device can be used as:
- STB ➔ Maximum or minimum monitoring with lock
 Reset following removal of the fault through actuation of the front-sided button or externally connected pushbutton
- ASTB ➔ As before, however for the monitoring of the exhaust gas temperature
- STW ➔ Maximum or minimum monitoring without lock
 Reset automatically on return into the permissible range
Switching hysteresis Always acts in the direction of safe range.
Error log memory The last fault is stored as plain text and can be called up in the working level and deleted.
Temperature probe △ The device may be operate only with temperature probes which are certified according to DIN EN 14597!
Content

General notes ...2
Technical data ...3
Dimensions ...4
Connection diagrams ..4
Description ..5
Operating and display elements ...5
Working level ..6
Configuration level ...7
Note on the representation ...7
Error reports ..11
Functional safety ..13
Functional test ...14
Certified probes ..15
Ordering code ...16

General notes!

Please read this manual attentive and take care to the country specific standards, safety requirements and accident prevention regulations. This document is part of the device and must stay at site at an easy accessible location for each user.

1 Mounting, starting up and operation

Mounting, starting up, operating and maintenance of the safety temperature-limiter must be effected from qualified personnel.
This device works without service. Opening is not permitted.
The valid standards and directives have to be strictly observed.
The EMV-directives must be fulfilled for the whole unit.
The technical datas (see page 3) are maximum values.

2 Interference resistance

This device fulfills the European standards with the EMC protection requirements for the industry. The indicated interference resistance is valid for the correct connection of this device according to the manual datas.

4 Warnings!

Warning notices are identified as following:

⚠️ Risk warning
ℹ️ Important information

5 Reshipment

Following points have to be paid attention to
• clean device
• operation description
• error description
• operating time if available
• address and contact person

6 Disposal

Material separation and utilisation is to be respected at disposal. The valid legal regulations and directives at this time, have to be considered.
Technical data

Power supply
- Supply voltage: 230 V AC ±10 %, 115 V AC ±10 %, or 24 V DC ±15 %
- Power consumption: < 4 VA
- Rated voltage: 250 V AC according to EN 60664-1, between input/relay output/supply voltage, degree of pollution 2, overvoltage category III
- Test voltage: 4 kV DC between input/relay output/supply voltage
- CE-conformity: EN55022, EN60555, IEC61000-4-2/3/4/5/6/11/13

Ambient conditions
- Operating temperature: -10 ... 55 °C
- Storage temperature: -30 ... 60 °C
- Rel. humidity: < 95 %
- Condensation: not permitted
- ▲ Operation only in vibration less ambient

Approvals
- EN 14597:2005: Temperature control devices and temperature limiters for heat-generating systems

Input
- Pt100: In the range -100.0 ... 600.0 °C/-100 ... 600 °C
 - 3-wire circuit, max line resistance 4 Ω/line
 - Sensor current <1 mA (no self-heating)
- Thermocouple
 - Type J: Fe-CuNi in the range -100.0 ... 800.0 °C/-100 ... 800 °C
 - Type K: NiCr-Ni in the range -150 ... 1200 °C
 - Type N: NiCrSi-NiSi in the range -150 ... 1200 °C
 - Type S: Pt10Rh-Pt in the range 0 ... 1600 °C
 - Comparison point compensation installed
- Basic accuracy: < 0.5 %, ±2 digit
- Temperature coefficient: 0.01 %/K

Display
- Graphic LCD display with 128 x 64 pixels, with white back lighting

Output
- Relay: SPDT < 250 V AC < 200 VA < 2 A cos φ ≥ 0.7; < 250 V DC < 80 W < 2 A
 - Protected internally with secondary fuse 2 A, delayed

Case
- Polyamide (PA) 6.6, UL94V-0
- DIN rail mounting TS 35 acc. to DIN EN 50022
- Weight: Approx. 450 g
- Connection: Screwed terminals 0.14 ... 2.5 mm² (AWG 26 .. 14)
- Protection type: IP20, DIN EN 60529, German BGV A3
Dimensions

Connection diagram

STL50-1

Supply voltage

Ext. Ext. Alarm signal
Reset 24 V max. 20 mA

<250 V AC <200 VA <2 A cos φ ≥ 0.7;
<250 VDC <80 W <2 A

Internal fuse 2 A (slow-blow)

A1

Alarm output

Pt100

© Input Pt100:
The maximum line resistance may not exceed 4 Ω each line. The corresponding line length for copper is stated in the table. For other cable materials and cross sections, the values must be new calculated.

<table>
<thead>
<tr>
<th>Cross section</th>
<th>max. length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14 mm²</td>
<td>32 m</td>
</tr>
<tr>
<td>0.25 mm²</td>
<td>58 m</td>
</tr>
<tr>
<td>0.5 mm²</td>
<td>116 m</td>
</tr>
<tr>
<td>0.75 mm²</td>
<td>174 m</td>
</tr>
<tr>
<td>1 mm²</td>
<td>232 m</td>
</tr>
<tr>
<td>1.5 mm²</td>
<td>348 m</td>
</tr>
</tbody>
</table>

STL50-5

Supply voltage

Ext. Ext. Alarm signal
Reset 24 V max. 20 mA

<250 V AC <200 VA <2 A cos φ ≥ 0.7;
<250 VDC <80 W <2 A

Internal fuse 2 A (slow-blow)

A1

Alarm output

Thermocouples
Type J, K, N, S
Operating and display elements

Description
The operation of the device is implemented in 2 levels.
The required parameter is called up with the button .
The selection within a parameter and the setting-adjustment of a value is implemented with the buttons and .

Button combinations (press buttons simultaneously):

- 1 parameter back
- Parameter is set to "0" or minimum value.

After switching on the supply voltage, the device initializes itself. In the display the message indicating device type and software version is shown. After the initialization, the device is running in the working level and the current temperature, as well as all safety-relevant adjustments, are displayed. The peak value storage is called up by short activation of the button .

The configuration level is called up by activation of the button for 2 seconds. In this case, all parameters which determine the properties of the device are programmed. In order to reach the security area of the configuration level, a password must be entered. If an incorrect password is entered, this appears as an error report in the display. After this signal, or even if no password has been entered, the skip-back into the working level is implemented. After entering an incorrect password three times, a security time of 60 minutes will elapse. The remaining security time is indicated in the display. With input of the correct password, the security area becomes accessible. Here adjustments can be carried out which must be protected against unauthorized change. After the last menu item, or if no button is pressed for longer than 2 minutes, a skip-back into the working level is implemented automatically and the current measured value is indicated in the display.

The configuration level can be exited at any time by holding down button for 2 seconds.

Error reports
In case of occurring faults, the messages are shown on the display in plain text. This simplifies the location of the error.

Operational startup reference!
The device is preset with an ex-works default setting. Therefore it must be adapted to each special application. See Page 7.
Working level

Note: In the working level only the resetting of the peak value storage is possible

Display

Process display
- only Pt100
- only thermo couple

Pt100
- STB max.: 19.2°C
- Limit value: 20.0°C

Type J
- STB max.: 19.2°C
- Limit value: 20.0°C

TC1: 19.2°C
TC2: 19.1°C

Description

- **Error log memory display**
 - no error
 - Reset with *

- **Peak value display**
 - Max.: 19.9°C
 - Min.: 18.5°C
 - Reset with *

- **Peak value display**
 - TC1: max. 19.9°C, min. 18.5°C
 - TC2: max. 19.8°C, min. 18.4°C
 - Reset with *

Switching over the display for the true value from 2 values to single value. Only the value will be displayed, which is nearer to the value of STB max. or STB min.

Peak value display for minimum and maximum measured value. Deletion of the values with the button ▲ or with every switch-off of the device.

Error log memory display
- Deletion of the error reports with the button ▼.
Note on the representation

Parameter appears only with corresponding configuration

Parameter appears only with corresponding equipment version

Configuration level

<table>
<thead>
<tr>
<th>Display</th>
<th>Description (entered values are default settings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100 STB max.</td>
<td>Working level</td>
</tr>
<tr>
<td>19.2 °C</td>
<td></td>
</tr>
<tr>
<td>Limit value 20.0 °C</td>
<td></td>
</tr>
</tbody>
</table>

Activation for 2sec

1 Language

Language: deutsch english française

2 Display unit

Measuring unit

°C °F

3 Contrast display

Contrast display

Setting possible from 0 ... 100%

Continue page 8
Input of the password for the security levels (in the delivery condition 0010)

⚠ Following three inputs of an incorrect password, a security time of 60 minutes will elapse. On entering 0000 and active password protection, a skip-back into the working level is implemented.

Change password
Setting possible from 0000 ... 9999

⚠ Caution: Note password. Resetting to 0010 can take place at works only!

Input
Type J Double thermocouple Fe-CuNi
Type K Double thermocouple NiCr-Ni
Type N Double thermocouple NiCrSi-NiSi
Type S Double thermocouple Pt10Rh-Pt

Decimal point (only in case of input Pt100 and thermocouple Type J)
without No decimal point
with One decimal point

Measure value correction
Setting possible from
-10°C (-10.0°C) ... 10°C (10.0°C)
<table>
<thead>
<tr>
<th>Display</th>
<th>Description (entered values are default settings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
<td>Select the STB operating mode for ASTB</td>
</tr>
<tr>
<td></td>
<td>STB max.</td>
</tr>
<tr>
<td>Display</td>
<td>Operating mode</td>
</tr>
<tr>
<td>STB max.</td>
<td>Safety-temperature limiter;</td>
</tr>
<tr>
<td>STB min.</td>
<td>temperature monitor;</td>
</tr>
<tr>
<td>STW max.</td>
<td>Safety-temperature monitor;</td>
</tr>
<tr>
<td>STW min.</td>
<td>temperature monitor;</td>
</tr>
</tbody>
</table>

Description:

- **max:** Relay is deactivated in case of *Overshooting* of the set-adjusted limit value
- **min:** Relay is deactivated in case of *Undershooting* of the set-adjusted limit value

Limit value (set point) alarm output
Setting possible in the corresponding measuring range

Hysteresis alarm output
Setting possible from 1°C (0.1°C) ... 100°C (100.0°C)

Measuring value difference of the thermocouples
Setting possible from 1°C (1.0°C) ... 5% up to the end value of the programmed thermocouple.

Display backlight

| AUTO | The backlight turns off after 2 min. **only** without button action. At error and switching off the relays the backlight turns on and remains in place. |
| ON | The backlight is permanent active. |

Continue page 10
Display

<table>
<thead>
<tr>
<th>Function reset button</th>
<th>Description (entered values are default settings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Function reset button front side</td>
</tr>
<tr>
<td>ON</td>
<td>OFF button blocked</td>
</tr>
<tr>
<td></td>
<td>ON button active</td>
</tr>
<tr>
<td>front side</td>
<td></td>
</tr>
</tbody>
</table>

Parameter lock

<table>
<thead>
<tr>
<th>Parameter lock</th>
<th>Description (entered values are default settings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>no parameter locked</td>
</tr>
<tr>
<td>ON</td>
<td>parameter locked</td>
</tr>
<tr>
<td>Configuration level</td>
<td></td>
</tr>
</tbody>
</table>

Pt100

<table>
<thead>
<tr>
<th>Limit value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.0 °C</td>
<td>STB max.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2 °C</td>
<td>Return to the working level</td>
</tr>
<tr>
<td>Display</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Caution!</td>
<td>The supply voltage does not reach the value which is required for secure function of the STL50.</td>
</tr>
<tr>
<td>Suppl. voltage too low!</td>
<td>The parameter cannot be changed, because the parameter lock for the configuration level is switched on.</td>
</tr>
<tr>
<td>Caution!</td>
<td>An incorrect password was entered for the security area. After 3 seconds a skip-back to the password input is implemented.</td>
</tr>
<tr>
<td>Parameter locked</td>
<td>Following three incorrect entries, a security time of 60 minutes will elapse.</td>
</tr>
<tr>
<td>Caution!</td>
<td>A broken line was detected at the connecting terminals to the thermocouples. Check connection of the thermocouples.</td>
</tr>
<tr>
<td>Sequence</td>
<td>The measured value exceeds the maximum temperature for the selected thermocouple.</td>
</tr>
<tr>
<td>49min 30s</td>
<td>The measured value falls below the minimum temperature for the thermocouple.</td>
</tr>
<tr>
<td>Safety time</td>
<td>A short circuit was detected at the terminals of the Pt100. Check connection lines and Pt100 sensor.</td>
</tr>
</tbody>
</table>

Caution!
- Suppl. voltage too low!
- Parameter locked
- Incorrect password: 1 unsuccessful attempt
- Sequence: 49min 30s
- Safety time

Thermocouples
- Broken line
- Measured val. > XXX°C
- Measured val. < XXX°C
- Pt100 Short circuit

Continue page 9
Error reports

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
</table>
| Pt100 | **Broken line**
Please check |
| Pt100 | Measured val.
> 650°C
Please check |
| Pt100 | Measured val.
> -120°C
Please check |
| Interner Fehler | **Device temperature**
Please check |
| Fatal error | **Memory error**
Replace device |
| Fatal error | **Hardware error**
Replace device |
| Fatal error | **Relay fault**
Replace device |

- **A broken line was detected at the terminals of Pt100.**
Check connection lines and Pt100 sensor.

- **The measured value exceeds the maximum temperature for Pt100 sensor.**

- **The measured value falls below the minimum temperature for Pt100 sensor.**

- **The internal temperature of the device has determined an inadmissibly high or low value. Check installation requirements and ambient temperature of the device.**

- **The monitoring of the program and main memory has resulted in a fault.**
The device must be checked in the works.

- **An abnormality has been detected during internal voltage.**
The device must be checked in the works.

- **A fault position of the relay contacts has been determined.**
The device must be checked in the works.
Functional safety

The STL50 safety temperature limiter was developed according to the specifications of IEC 61508. This standard describes the functional safety of safety-related programmable electrical and electronic systems.

The device corresponds to a subsystem of Class B, with the requirement Level SIL2 (single-channel). The safety function of the device refers to the recording and evaluation of the temperature, and the contact position of the built-in relay automatically resulting from that.

Safe status
The safe status of the device is given only in the initial position of the relay (closed-circuit current mode). If the internal diagnostics system identifies a fault, the relay assumes the initial position. The make-contact is therefore to be employed for linking the relay change-over switch into the monitoring equipment.

Temperature detector
Connected temperature probes are monitored for circuit break or short circuit. In case of thermocouples, this is only possible with double thermocouples due to physical conditions. It is not permitted to employ single thermocouples and to switch the inputs in parallel through jumpers. If separate sensor fittings are employed, these must be mounted directly next to each other, so that they both record the same temperature.

Malfunction and fault case
If a fault case results in the system, the cause must be eliminated immediately. If the safety temperature limiter STL50 is taken out of operation for this purpose, the process is to be assured in another manner. If there is a device error, we request that you return it to the works with a brief error description.

<table>
<thead>
<tr>
<th>Safety-technical key indicators of the Functional Safety STL 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety-related output signal</td>
</tr>
<tr>
<td>Test standard</td>
</tr>
<tr>
<td>Testing authority</td>
</tr>
<tr>
<td>SIL</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Pt100</td>
</tr>
<tr>
<td>Thermo couple</td>
</tr>
<tr>
<td>λ_{SD} (Rate of detected harmless failures)</td>
</tr>
<tr>
<td>λ_{SU} (Rate of non-detected harmless failures)</td>
</tr>
<tr>
<td>λ_{DD} (Rate of detected dangerous failures)</td>
</tr>
<tr>
<td>λ_{DU} (Rate of non-detected dangerous failures)</td>
</tr>
<tr>
<td>(1 FIT = 1 failure / 10^9 h)</td>
</tr>
<tr>
<td>Content of harmless failures (SFF)</td>
</tr>
<tr>
<td>Average probability of a failure (PFDavg)</td>
</tr>
<tr>
<td>Probability of one failure per hour (PFH)</td>
</tr>
<tr>
<td>Effective service life of the safety function</td>
</tr>
</tbody>
</table>
Functional test

During operation of a device with a high requirement rate, i.e. in case of process-conditional frequent addressing of the device, additional function tests can be dispensed with, in accordance with IEC 61508. This also applies for an operation with a low requirement rate, i.e. in case of process-conditional infrequent addressing of the device. The probability of a failure is very small for 10 years of service life according to SIL2 (see table Page 13).

For a function test, the temperature probe is simulated with a simulator. In case of thermocouples, the inputs may be switched in parallel.

The test begins with the verification of the temperature monitoring. The relay must be active in the approved range.

The following are then tested:

- Agreement of the temperature indicated on the STL50 display with that of the simulator for every test stage
- The alarm function in case of leaving the approved temperature range
- The alarm function in case of sensor open (every line disconnected) and sensor short-circuit.

A correct alarm function of the STL50 exists in the following cases:

- The relay is deactivated and the contact occupies the initial position of rest
- The respective fault is indicated correctly as plain text in the display
- The LED alarm on the front panel of the STL50 lights up
- A voltage of 24 V DC for an external alarm is present on Terminals 17 and 18.

After the temperature has been changed with the simulator into the approved range again, a correct function of the STL50 exists when the following occur in the operating mode safety temperature limiter.

- the relay is again activated only after the front-sided RESET button or
- an external RESET button has been activated,
- after that, the display indicates the normal operating data,
- the LED alarm on the device front of the STL50 lights up and
- there is no further voltage on Terminals 17 and 18.

if, in the safety temperature monitor operating mode, the following are implemented

- the relay is activated without the front-sided RESET button or an external RESET button being activated,
- the display indicates the normal operating data,
- the LED alarm on the device front of the STL50 get lightless and
- there is no further voltage on Terminals 17 and 18.

⚠️ Caution!
- If the relay is not deactivated during the test stages, or the temperature and/or error cause are not indicated correctly in the display, the STL50 must be returned to the works for verification.
- In the meantime, the system must be maintained in a secure status by other means.

⚠️ Special information!
- The STL50 safety temperature limiter must be installed in a switchgear cabinet with protection type IP40 at least.
- Tension relief of the connecting line(s) from the temperature probe is to be provided.
- To assure the internal device protection of the STL50, protection of the monitoring circuit with an external fuse (a maximum of 1.6 A semi-time-lag) is recommended. In case of triggering the internal fuse, the device must be returned to the works for repair!
Certified probes

Pt100
Thermocouples

Safety-temperature probes TR293; TR296
Safety-temperature probes TC293; TC296

T(R,C)293
Clamping gland moveable
Nominal length (NL)
Ø9mm
Ø3mm
40
85
115
M20x1.5
SW27
G 1/2B

T(R,C)296
Neck pipe
Installation length (EL)
Ø9mm
Ø6mm
40
85
115
M20x1.5
50/140
SW27
G 1/2B
Ordering code:

STL50 - [] - [] - [] - []

1. Input

1 Pt100, 3-wire connection -100.0 ... 600.0 °C/-100 ... 600 °C
5 Thermo couples
 J (Fe-CuNi) -100.0 ... 800.0 °C/-100 ... 800 °C
 K (NiCr-Ni) -150 ... 1200 °C
 N (NiCrSi-NiSi) -150 ... 1200 °C
 S (Pt10Rh-Pt) 0 ... 1600 °C

2. Output

1R 1 Alarm output relay

3. Supply voltage

0 230 V AC ±10 % 50-60 Hz
1 115 V AC ±10 % 50-60 Hz
5 24V DC ±15 %

4. Option

00 without option