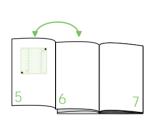


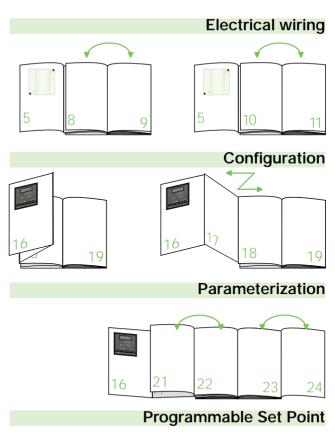
Regolatore-Programmatore Multi-ingresso, Multi-uscite, Multi-funzioni

Serie QP

Programmer Process Controller Multi-input, Multi-output Multi-functions

Series QP


ISTRUZIONI PER L'USO INSTRUCTION MANUAL M.I.U. QP - 1/96.06 Cod. J30 - 304 - 1AQP-IE



IDENTIFICATION OF MODEL DIMENSIONS AND INSTALLATION ELECTRICAL WIRING KEYS AND DISPLAYS FUNCTIONS CONFIGURATION PROGRAMMING PROCEDURE Parameterization Parametr description PROGRAMMABLE SET POINT Programme loading and/or modification Operating phases OPERATING INSTRUCTIONS TECHNICAL DATA PRGM PROGRAMMING GUIDE SERIAL COMMUNICATIONS (See MIU-CS)	page 2 page 3 page 4 page 12 page 14 page 20 page 25 page 25 page 31 page 34 see enclosed leafle page 39 see enclosed leafle	3 1 1 1 1 1 1 1
---	--	--------------------------------------

READING INSTRUCTION

To better read and understand this manual please note the following:

Thank you for choosing an ASCON controller.

The QP series controllers can be used as programmer controllers. They are available with two main versions: the first with "Standard Set point" (Local/Rem/3 memorized S.p.), the second with "Programmable Set point" as an option (e.g. QP-3...1)

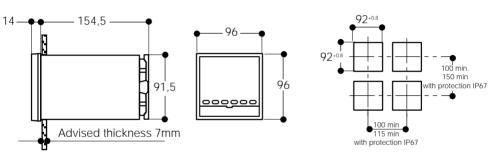
They are fitted with AUTO-TUNE, as auxiliary for sistem start-up, and serial communications for introduction into a distributed control network.

They are complete because all possible variables are always present. Configuration of the instrument permits determination of the operating mode according to the required application.

1 1

Identification of model

Model code: QP
Power supply
Serial communications RS485
Auxiliary analog output Y6
Programmable Set point


Power supply	
100240V 50/60 Hz	3
1628V 50/60 Hz and 2030V dc	5
Serial communications (option)	
None	0
RS485 Modbus - Jbus	3
Y ₆ auxiliary output (option)	
None	0
0/420mA, 0/15V, 010V	1

0

1

Programmable Set point (option)

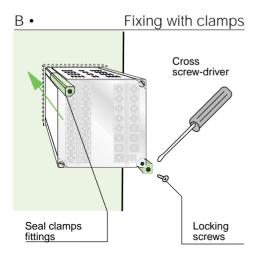
Provided (16 Prgm.s, 255 Segm.s)

2.2

Panel installation

Panel fitting

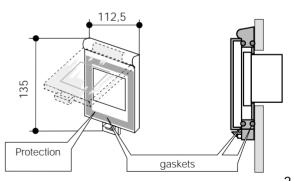
Install away from:

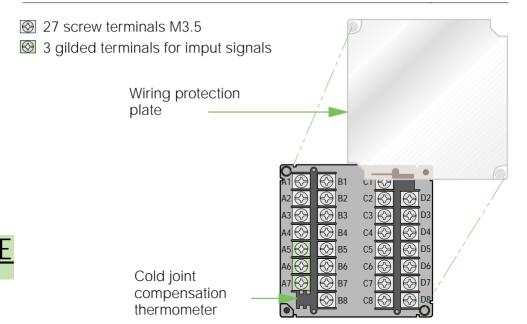

- heat sources
- corrosive gases
- · dusty environments

A •

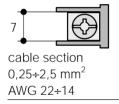
ENVIROMENT:

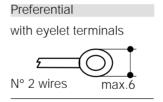
Temperature: 0...50 °C Humidity : 30...85UR%

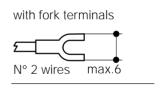

C • plate for engineering units


100 - 10 - 100 B

2.3 Front protection IP67


mod. F10-435-2A101





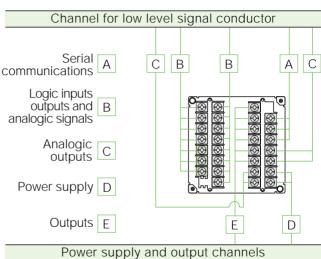
В•

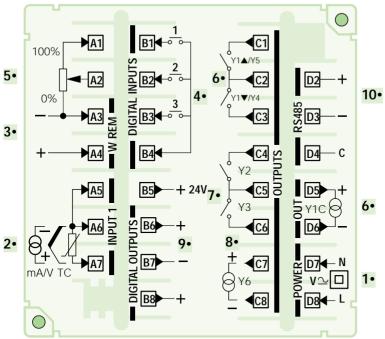
Effecting the connections

3.1 Precautions and advised conductor course

Although this controller is designed to resist the heaviest disturbances present in industrial environments (as per CE mark), it is advised to keep to the following precautions:

A. Precautions


Advised conductor course


Single out supply line from power line

Keep away from teleruptors, electromagnetic contactors and powerful motors

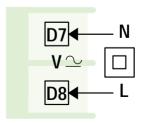
Keep away from power groups, in particular if with phase control

Wiring diagram

Relay outputs,
combined to the terminals C1/C2 and C2/C3, can be configured as auxiliary output Y4 and Y5 (alarms) only if they are not used as main control output.

1•

switching type with double isolation Standard:


100...240Vac

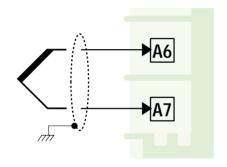
-15 +10% (250 Vac max)

or:

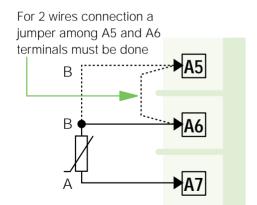
24Vac - 24Vdc -15 +10% Absorbed power 5 VA max

Single power supply

2•

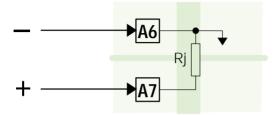

"X" measurement inputs

For Thermocouples J-L-T-K-S-R-B-N-E-W

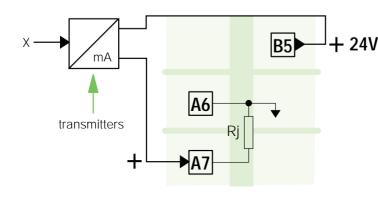

3 2 1 1

- Respect polarities
 For eventual extensions, use a compensated cable suitable for the type of used thermocouple
- The eventual screen is well earthed at only one end

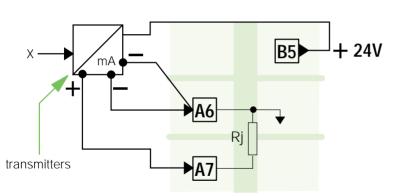
2 •


"X" measurement input (continued)

B • For RTD Pt100


- For 3-wires connection, use cables of same section (min. 1mm²) Line 20Ω max. for wire
- For 3-wires connection, use cables of adeguate section (min.1,5mm²) Note: with a 15m probe-controller distance and a 1,5mm² section cable, the error is about 1°C.

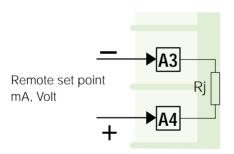
C • Continuous mA, Volt


Internal Rj = 30Ω per mA Internal Rj = $10M\Omega$ per mV Internal Rj = $10K\Omega$ per Volt

C.1 • For 2 wires transmitter

auxiliary power supply for transmitter 24 Vdc ±10% 30mA max

C.2• For 3 or 4 wires transmitter

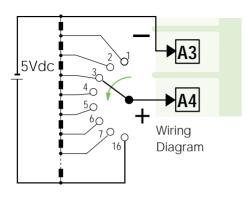


auxiliary power supply for transmitter 24 Vdc ±10% 30mA max

3•

Auxiliary input

On Standard Set point version these terminals must be used as Remote Set point input.

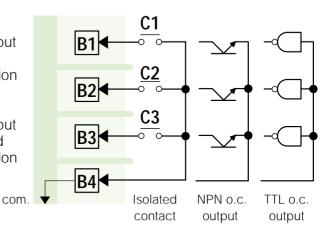

Current 0/4...20mA Internal Rj = 30Ω

Voltage 1...5V, 0...5V, 0...10V Internal Rj = 300 KΩ

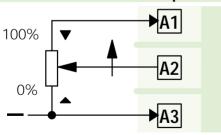
NOT galvanically isolated

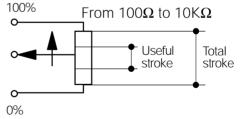
On Programmable Set point version these terminals must be used as Prgm selection input.

A stabilized external voltage sourse (max 5Vdc) allows to select one of the memorized Prgm.s.

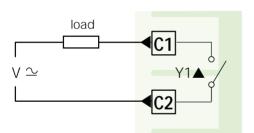

$$Vin = \frac{N^{\circ} Prgm}{3.2}$$

Each Prgm has to be selected by a different voltage value as follows: (E.g. Prgm 8 = 2,5 Vdc). With Vin = 0 the selection is inhibited.


4 • Logic inputs

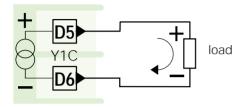

When the external logic input is ON (maintained closed contact), the relevant function is operating.

When the external logic input is OFF (maintained opened contact), the relevant function is not operating.
(see page 19)

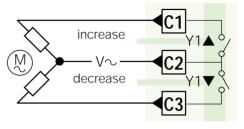


5 • Input feedback potentiometer (servomotors)

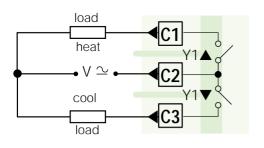
One N.O. contact


6.1• Logic single output configuration N=

Output 0...22Vdc ±20% (20mA max.) galvanically isolated

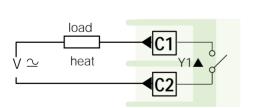

<u>L</u>

6.2• Continuous single output configuration N=

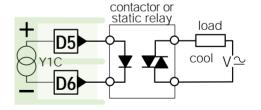

galvanically isolated 500Vac/1min 750 Ω /15V max in current 500 Ω /20mA max in voltage

6.3• Output for servomoconfiguration N=

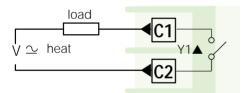
Three position with two interlocked contacts (increase, stop, decrease)

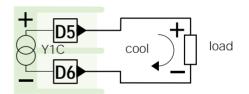

6.4

Relay / relay dual action output configuration N=

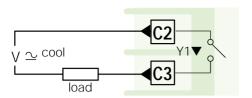

2 N.O. contacts

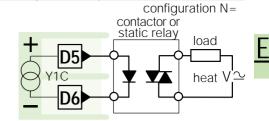
6.5•


Relay / logic dual action output


configuration N=

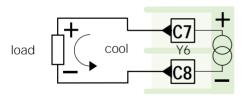
Relay / continuous dual action output

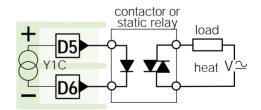

configuration N=



6.7•

Logic / relay dual action output

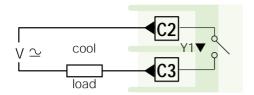


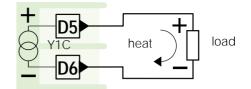


6.8•

Logic / continuous dual action output

configuration N=

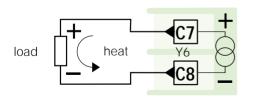


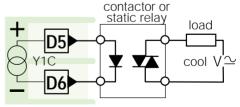


6.9

Continuous/ relay dual action output

configuration N=

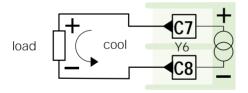


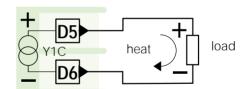


6.10

Continuous / logic dual action output

configuration N=

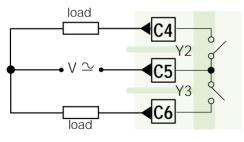


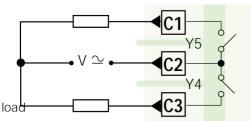


6.11•

Continuous / continuous dual action output

configuration N=



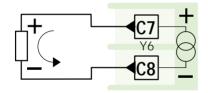

<u>E</u>

Auxiliary output Y2 - Y3 - Y4 - Y5

see page 19

2 N.O. relay outputs

2 N.O. relay outputs

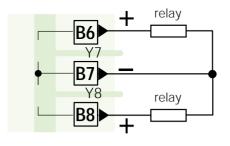


The 2 N.O. relay outputs can be used as Y4 and Y5 auxiliary outputs, only if they are not used before as main control relay output.

8•

Retransmission output Y6 (option)

see page 19

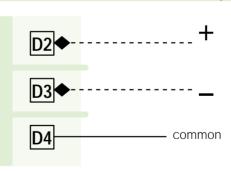


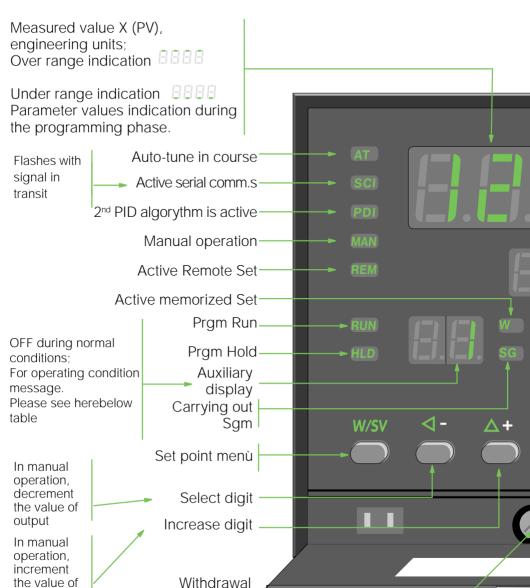
galvanically isolated 500Vac/1min 750 Ω /15V max in current 500 Ω /20mA max in voltage

9.

Y7 & Y8 Logic Outputs (for external relays)

For "Programmable Set point" version only

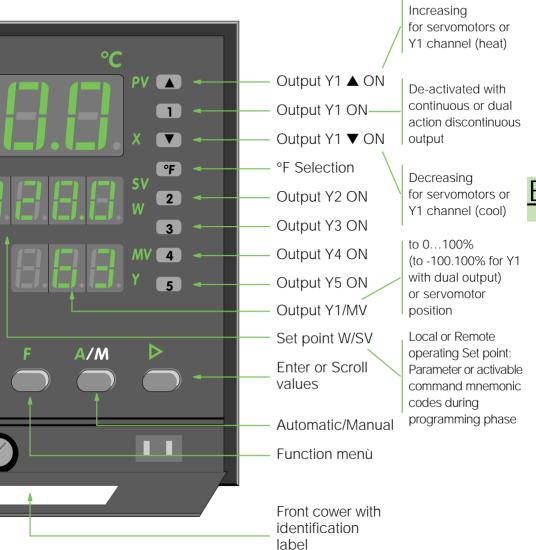

They can be freely configured to the programme.


The galvanically isolated 500 Vac/1min 30mA max, 28 Vdc (if Off) 1Vdc max at 30mA.

10•

Serial communications (option)

Consult direction for use "SERIAL COMMUNICATIONS SUPPLEMENT"


RUN HLD		W SG	Instrument operating condition	
	1 1	W	One of 3 memorized Set points	
		W	Computer set point is operating	
		_	One of three logic inputs is forcing Y1 equal to Remote Set Point	
		_	One of three logic inputs is forcing Y1 equal to Forcing output value	
		SG	Initial segment	
		SG	Final segment	Programmable
		SG	Segment n°	Set point version
		SG	Reset mode	

screw

Programme mode leds
condition
OHAILIOH
d Mait made when "Manual"
nd. Wait mode when "Manual"
arrying out.
1

the value of output

When the mounting and wiring are completed, the instrument shall be configured and then, programmed. The controller is of the universal type, this means that all the functions are available on the instrument, configuration and programming allow to select and adjust the desired functions.

5.1•

Configuration Access

Configuration is essential for the correct operation of the controller.

Proceed with care

It is possible enter in configuration phase by two different ways.

<u>E</u>

5.1.2•

Not configured instrument (1st configuration)

5.1.3 • Configured instrument (configuration modify)

When powered, the instrument is in the stand-by mode, all the outputs are not operating.

When powered, the instrument automatically checks if the configuration is correct. For 5 seconds all the outputs are not operating. After 5 seconds, and if the configuration is correct, the instrument automatically starts.

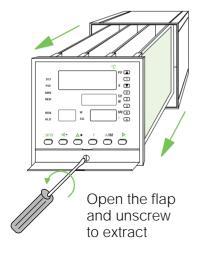
is

The displays show permanently

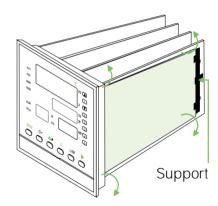
The instrument identification displayed for 5 seconds

This is a procedure without time delay

NO

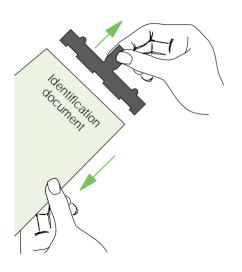

SI

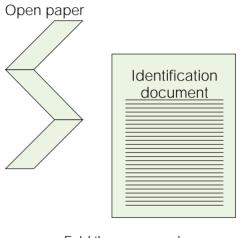
OK


enter password

Enter and/or modify selected parameter code and/or value (flashing digit of the X/PV display)

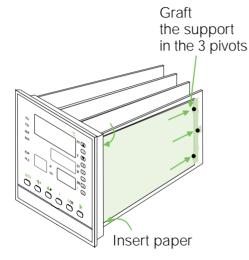
Instrument Withdrawal A •


Unhook the paper support B •

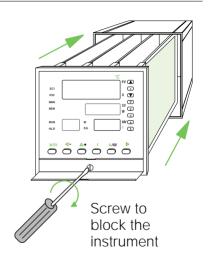

Left the support, unhook and unthread the paper

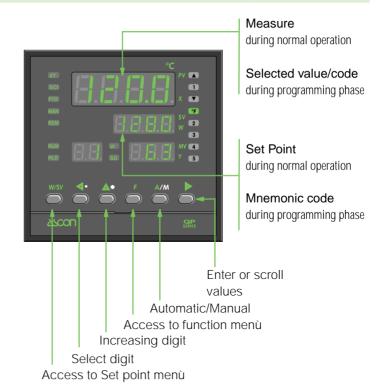
Write table

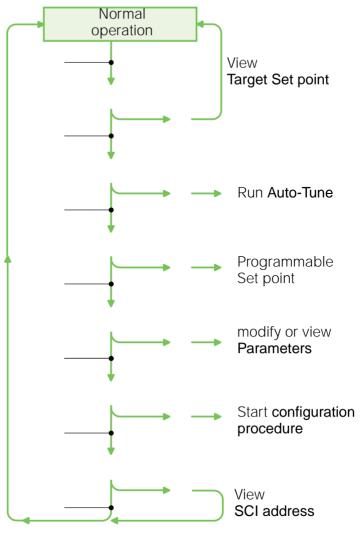
Share paper



D•




Fold the paper and connect to the support


E • Insert paper

Instrument insert

5.2

Configuration phase

procedure without time delay

Before entering the configuration codes and parameter values given in the pages 18 and 19, it is suggested to carefully fill the given herebelow table with the selected codes/values.

All configuration codes/values affect the following ones, due to this, entering of the configuration codes/vaules must be done in accordance with the sequence given herebelow.

When the configuration phase is started, the first configuration parameter is displayed. By pressing the key, all the configuration parameters are scrolled in accordance with the sequence given in the following table.

	Parameter mnem. code (display W/SV	, parameter	Entered Code and/or value	Def
	uispiay w/sv	description	(display X/PV)	Ref.
1 (3		Identification tag number		A
-	•	Algorythm and control action		В
	•	"Standard" Set point type		С
1 2	>	Programmable Set point		C1
	• ‡	#nput type and scale range		D
	>	°C, \$ e K selection		E
	•	Temperature of external cool joint		F
	•	Decimal point for linear scales		G
	•	S#ale beginning value for linear scales		Н
	•	E&d scale value for linear scales		K
	•	1 Input L#gic function		1
	•	2 Input Logic function		J
	•	3 Input Logic function		L
-	•	Remote Set point input range		M
-	>	Y1 control output type		N
	•	Y1 output range		0
	•	Y2 alarm type		P
-	>	Y3 alarm type		Q
	•	Y4 àlarm type		R
-	•	Y5 alarm type		S
	•	Y6 2 nd analog output (retransmission) type		Т
- S	•	Y6 output range		U
↓	•	End of configuration		
		To the V group of parameters		

The configuration codes/parameter values (shown with **grey background**), appear, or not, depending on the previously selected ones. (see notes page 18 & 19)

Attention: not coherent codes with the previously selected ones, if entered, are not accepted. Not admitted codes are also not accepted.

When the selected value is higher than the admitted value, the X/PV display shows:

When the selected value is lower than the admitted value, the X/PV display shows:

For an easy and quick subsequent identification/modification of the controller operating characteristics, it is suggested (as soon as the configuration is completed), to fill the "Identification document", located inside the instrument, with the configuration codes/values. (see page 15)

Identification code
Selectable range ...--Freely selectable tag number (in accordance to the customer service assignement).
When the configured controller is powered, the X/PV display shows the tag number for 5

seconds.

Algorythn and contr		В
On - Off	Reverse	
UII - UII	Direct	
P.I.D.	Reverse	
P.I.D.	Direct	
double	Reverse)
P.I.D.	Direct	*

Press these keys to select digits, to modify values and enter parameter codes/values, codes and values are automatically accepted after 5 seconds.

Select digit increasing digit

Standard Set point type C Only Local Local and 3 memorized Only Remote Local and Remote Local and Local + Remote) Not displayed if Progr. Set point version

Programmable Set point type		C1
Time basis	Priority	
0É9999 sec.s	Slope	
01//// 300.3	Duration	
0,0É999,9 min	Slope	
0,01777,711111	Duration	
0É999,9 min	Slope)
01777,7111111	Duration	*
0,0£999,9 hours	Slope	
0,017777110di3	Duration	+
0É9999 hours	Slope	,
527777 Nouis	Duration	-

Not displayed if Standard Set point version

#		
Input type and scale range		
	-200£600 °C	
	-328£1112 °F	
RTD	73E873 K	
Pt100 Ω	-99.9E300.0 °C	
IEC 751	-99.9É572.0 °F	
	173.3É573.2 K	
Thermocouple J	0£600 °C	
FeCu45%Ni	32É1112 °F	
IEC584	273E873K	
Thermocouple L	0£600 °C 32£1112 °F	
FeConst.	0251112	
DIN 43710	273É873 K -200É400 °C	
Thermocouple T Cu CuNi		\
IEC 584	-328E752 °F 73E673 K)
Thermocouple K	0E1200 °C	
Cromel-Alumel	32£2192 °F	*
IEC 584	273E1473 K	
Thermocouple S	0É1600 °C	
Pt10%Rh-Pt	32E2912 °F	
IEC 584	273É1873 K	
Thermocouple R	0É1600 °C	
Pt13%Rh-Pt	32É2912 °F	+
IEC 584	273É1873 K	
Thermocouple B	400É1800 °C	
Pt30% Rh-Pt6%Rh	752É3272 °F	,
IEC 584	673É2073 K	
Thermocouple N	0É1200 °C	
Nicrosil-Nisil	32É2192 °F	-
IEC 584	273É1473 K	
Thermocouple E	0É1100 °C	
Ni-NiMo18%	32£2012 °F	
IEC 584	273£1373 K	
Thermocouple W	0É2000 °C	
W3%Re-W25%Re	32É3632 °F	
IEC 584	273É2273 K	
4É20 mA		
0E20 mA		
0E50 mV		
0E200 mV	l image coolea	
0E1 V 1É5 V	Linear scales	—
OÉS V		
0£10 V		
4É20 mA		
0E20 mA		
0£50 mV	Linear scales	
0£200 mV	with square	
0É1 V	root extraction	
165 V		<i>)</i> *
0É5 V	7	
0É10 V		+

٠ ؛ ٧		
°C, °F, K selection ar cool joint compensation X input		E
Internal	°C	
	٥F	
compensation	K	
Futomod	°C	

External compensation does not appear with Pt100 Ω or linear inputs. When the external cool joint

External compensation

compensation is configured, its value must be set by the parameter **%(Tab. F)**

Input decimal point for linear scales	G
None	
1 decimal point	
2 decimal points	
3 decimal points	

This code does not appear when the D table (# is selected between and .

Logic input notes

. .) .*! & - codes depend on the type of Set point previously entered. (Tab. C)

Index and from to are displayed if Programmable Set point type has been chosen.

Is present only if Remote Set point has been selected Tab. C codes , ,).

(see note on the left) Remote Set point М scale range 20 mA Current 0É 20 mA 1É 5 V 5 V ΩĖ Voltage 10 V (see note on the left)

Back to the beginnining of sgm.

Functions

None

of the 3 logic inputs

Manual control (loop A) 1st memorized Set point

2nd memorized Set point

3rd memorized Set point

Remote Set point Local Set point Locked keyboard 2nd P.I.D. algorythm Y1 Remote Set point input Y1 Forcing value Programme Launch/Stop Programme Run/Hold Programme Launch-Run/Hold Programme Stop Programme Hold (Local S.p)

Next segment

Control output type Y1(▲) Y1(▼ Relay Logic Continuous Servomotors Relay Relay Relay Logic Relay Continuous Logic Relav Continuous Logic Relay Continuous Continuous Logic Continuous Continuous

and . can be selected Codes . . if the 2nd analog output option (Y6) is fitted. These codes depend on the Tab. B (

If control action is (Tab. B)	Select (Tab. n)
On - Off	
single P.I.D.	
double P.I.D.)*

Y1 output ra	nge	9	0
Current		20 mA	
Current	0É	20 mA	
	1É	5 V	
Voltage	0É	5 V	
	0É	10 V)

The code is available only if the main output (Y1) is of the analog type (see Tab. N codes , , -,

	•	
!) !	*
Y2-Y3-Y4-Y5	Ĺ	P-Q
Alarm type	5	R-S
Disabled		
X1 Input	N.A.(close)	
interruption (1)	N.C. (open)	
Independent	Active high	
loop A	Active Iow)
Deviation	Active high	*
loop A	Active Iow	
Band	Active outsid	e+
loop A	Active inside	,
Output Y1	Active high	-
loop A	Active low	
Out of Prgm.	N.O.(close)	
max. Dev. (2)	N.C. (open))
Configured to t	he Prgm. (2)	*

Y4 and/or Y5 outputs are not available. if the control output has been already used as single or double relay for servomotor output. Tab. N Codes ! ,) , *, ,+, -

(1) Only for thermoelements. 4É 20mA and 1É 5V

(2) Displayed if Programmable Set point version, only.

	! Z!\ OPT	ION
Υ6	2 nd analog output type	T
Dis	abled	
ion	Measure X1 Set point W Output Y1 Output Y1(channel ▼) Deviation 0É 25%	
ISS	Set point W	
Sm	Output Y1	
ran	Output Y1(channel ▼))
Zet	Deviation 0£ 25%	*

This code is available only if the 2nd analog output has not been used as second control output ! Tab. N codes . .

Y6 output ran	ge		U
Cummanat	4É	20 mA	
Current	OÉ	20 mA	
	1É	5 V	
Voltage	OÉ	5 V	
	OÉ	10 V)

The code is not available if disabled, Tab. T - Codes , , ,) ,* or if double output is selected and Y1 (channel ▼) is logic or continuous type. Tab. N - Codes,

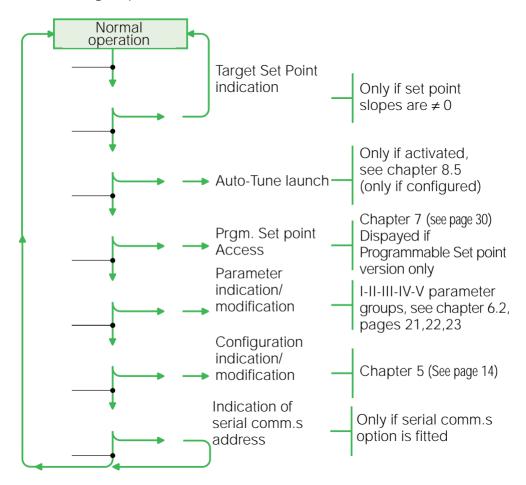
External cool joint temperature

0 É . 50°C 32 É . 122' Admitted 32 É . 122°F 273 É . 323 K range

Enter a value coherent with the admitted range. Higher and lower values will not be accepted. This code is not available with internal Cold joint compensation

Input beginning value for linear scales

& 3


Input full value for linear scales for

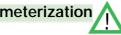
-100 olr -- ... +100...--minimum span 100 counts When the configuration phase is completed the programming phase shall be started.

6.1 • Main menù

The main menu allows controller configuration and parameterization, Auto tune launch (start), indication of target Set point and serial comm.s address.

Press key during normal operation, main menu functions are shown in the following sequence:

6.2• Parameters access

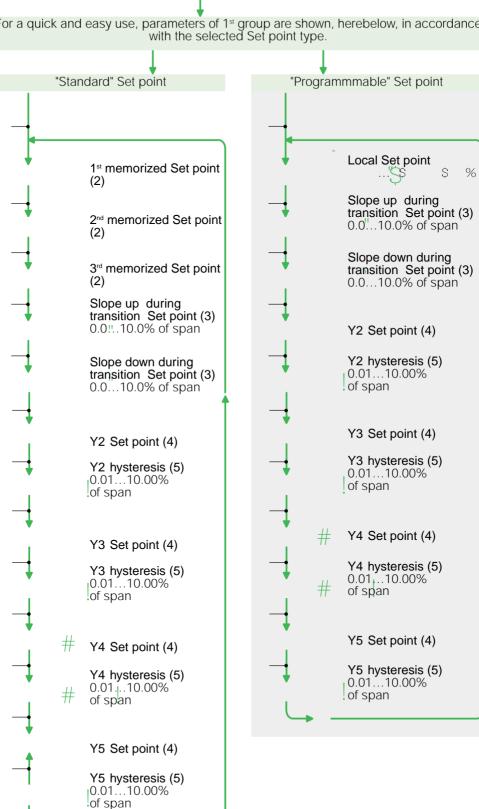

Starting from normal operation, press key repeatedly until the display W/SV shows . , press key to reach the first parameter of the first group .

Parameters are divided into 5 homogeneous groups.

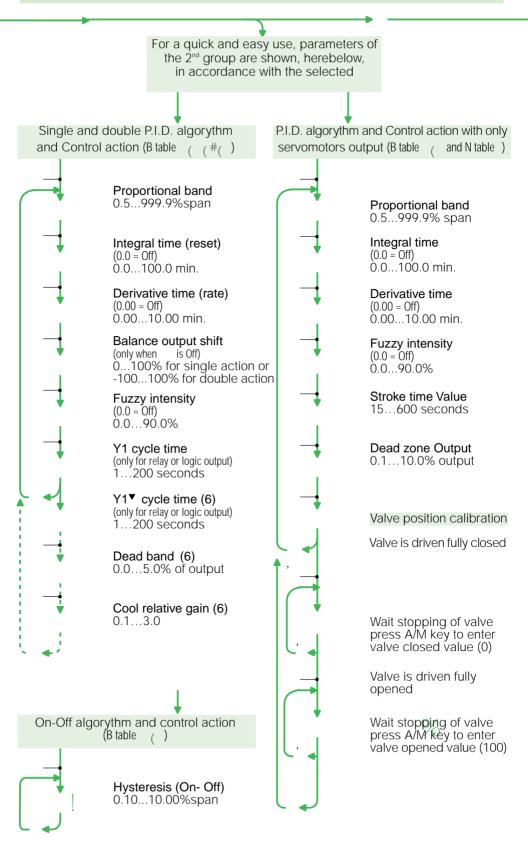
Press key to reach the next parameter group.

The V group of parameters is protected by a Password, enter display shows

when



1st GROUP


This procedure is time delayed. If no keys are pressed for about 30 seconds, the instrument returns to the normal operation.

Parameter indication/modification

For a quick and easy use, parameters of 1st group are shown, herebelow, in accordance

2nd GROUP

3rd GROUP 4th GROUP Proportional band (7) Fuzzy scale amplitude (7) 0.5...999.9%span 0.5...999.9% span Integral time (reset) (7) Derivative Fuzzy (7) (0.0 = Off) " 0.10...99.99% span/min 0.0...100.0 min. Derivative time (rate) (7) Sampling time 0...30 seconds (0.00 = Off) " (0 = 0.5 sec.s)0.00...10.00 min. Balance output shift (7) Time constant of the (only when is off) 0...100% for single action or input filter (0 = Off) 0...30 seconds -100...100% for double action Max speed for increasing Cool relative gain (6) Y1 value (8) (0 = Off) 0...20 %/sec.s 0.1...3.0 Max speed for decreasing Y1 value (8) (0 = 0ff) 0...20 %/sec.s

Notes

- 1 Local Set point is available only with Programmable Set point version.
 - Wide range settable but within the Set point limits entered under the V parameter group.
- 2 The 3 memorized Set points are displayed only if the \$\text{Set point type}\$ code is selected as \$\text{local} and 3 memorized (Table C, see page 16). The memorized Set points are adjustable over the full scale range but within the Set point limits entered under the V parameters group.
- 3 If set to 0.0, the slope is excluded. The Set point change is of the step type.

The maximum set value is 10% of span expressed in digits/min. Example:

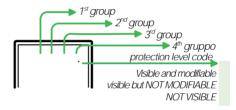
Range: -200£600 °C

Span: 800°C

Maximum set value: 80.0 digit/min

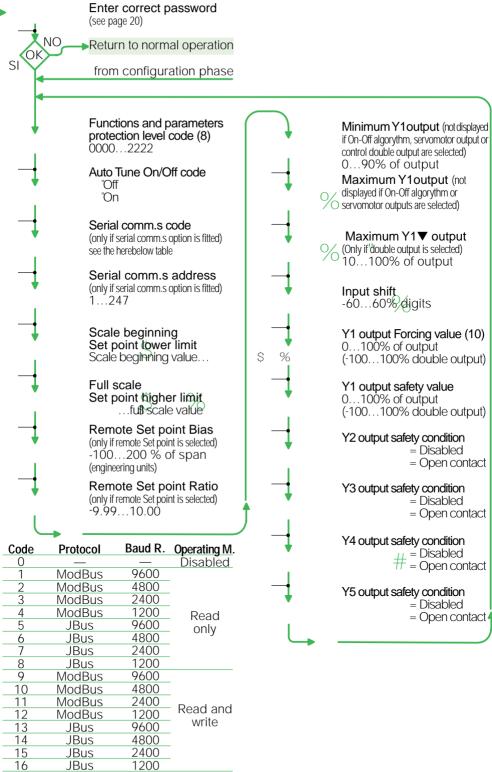
Corresponding to: 80.0°C/min

Only for "Programmable Set point version" slopes
can be expressed in the following modes:
0,1 digits/sec, 0,1 digits/min or 0,1 digits/hour. It
depends on the selected value during the


configuration phase (**Table C1** page 18).

4 This parameter is not displayed if the balarm type code is selected as Disabled or Dinput interruption, if grater the Prgm. max deviation or linked to the Prgm. (**Tables P-Q-R-S**, , , , , , see page 19)

The set range of Y2 and Y3 Set point, changes in accordance with the configuration of the dalarm typed as follows:


¥ Independent: over the full scale range ¥ Deviation: -300£+300 ¥ Band: 0£300

- 5 This parameter is not displayed if the balarm typeb code is selected as Disabled or Dinput interruption if grater the Prgm. max deviation or linked to the Prgm. (Tables P-Q-R-S , , , see page 19)
- 6 Only for double action output.
- 7 Not displayed if the "Algorythm and control action" is "On-Off" or if one of the 3 logic inputs is configured as "2nd PID algorythm" (Table P-Q-R code
- 8 Not displayed if the "Algorythm and control action" is "On-Off" or if the "Control Action" is selected for servomotors.
- **9** Functions and parameters protection level code.

10Parameter is present if Y1 is not configured as servomotor output or one of the 3 logic inputs is configured as "Y1 forcing value" (Table I-J-L code)

5th GROUP

17

18

19

20

21 22 23

24

ModBus

ModBus

ModBus

ModBus

JBus

JBus

JBus

JBus

9600

4800

2400

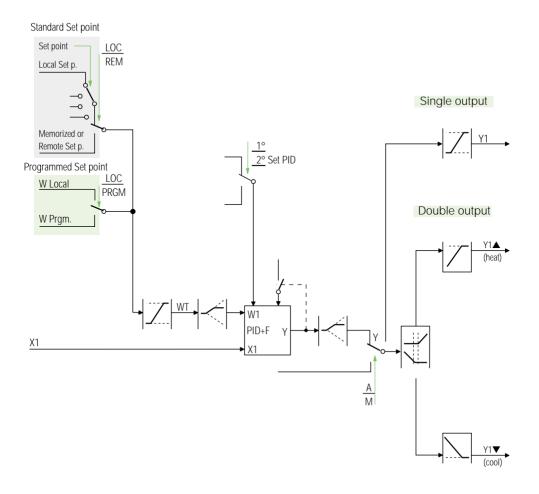
1200

9600

4800

2400

1200


Supervision

system

or

local mode

6.4 Block diagram for 1 Std. Loop with single and/or double output

When the QP controller is configured with a double action (e.g. Heat/Cool) two different outputs are used from the same PID algorythm. In addition some specific parameters are available to help the PID algorythm: parameter which defines the ratio between Heating Proportional band and Cooling Proportional band. parameter instead set the dead zone transition among the two Heating & Cooling actions. Besides the Maximum Y1 output value can be modified by and for the different outputs.

6.5•

Parameters description

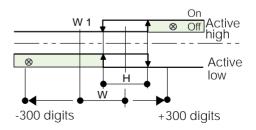
To semplify the use of parameters, they are grouped in homogeneous groups with the similar functions

1st GROUP

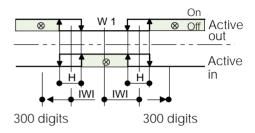
These pre-fixed Set point values can be recalled by logic inputs, keyboard or serial comm.s. The selected Set point number appears on the auxiliary display

Set point speed change (digits/min) (digits/sec.s, digits min, digits/hours for Prgm Set point)

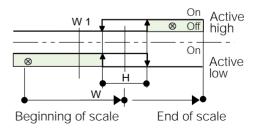
Set point of Y2,Y3,Y4,Y5 outputs. The alarms type depend on the relative configuration code.


Y2 hysteresis Y3 hysteresis

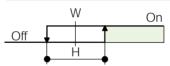
Y4 hysteresis Y5 hysteresis


Hysteresis of Y2, Y3, Y4, Y5 outputs (% of span)

Alarm types


Deviation


Rand


Independent

Input interruption

2nd GROUP

Proportional band

The proportional action modifies the Y1 control output value respect the deviation (W - X) in a proportional way.

Integral Time

This is the necessary time of the Integral action to give the same power which has already given by the proportional action

Derivative time

This is the necessary time of proportional action to reach the same level of P. + D. actions

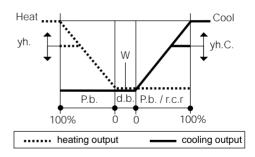
Balance output shift

If is Off, the Balance Output Shift corresponds to the Y1 value on steady conditions (W = X)

Fuzzy intensity

It allows to change the strenght of Fuzzy algorythm respect the PID algorythm during the control mode

Y1 cycle time


Y1▼ cycle time

This is the basic time used by the control algorythm to change the On % value respect the Off % value of Y1 output during the control mode.

Dead band

Dead Band between heating/cooling control outputs.

Heating / cooling algorythm

Cool Relative Gain

This value is the ratio between the cooling/heating proportional band

Valve stroke time

Necessary time to go from 0 to 100% of servomotor stroke.

Output dead zone

Output sensitivety or output dead zone

Valve position calibration

It allows to enter into the calibration procedure of the potentiometer position.

Y1 hysteresis

Hysteresis of Y1 output (% of span).

<u>E</u>

2nd Proportional band

The proportional action modifies the Y1 control output value resoect the deviation W-X in a proportional way.

2nd Integral time

This is the necessary tyme of the integral action to give the same power wich has already given by the proportional action

2nd Derivative time

This is the necessary time of proportional action to reach the same level of P. + D. actions

2nd Balance output shift

If is Off, the Balance Output Shift corresponds to the Y1 value on steady conditions (W = X) (When the correct PD algorythm is entered and the process has been stabilized, on off-set conditions, enter the Y1 value shown on the W/SV display).

2nd Cool Relative Gain

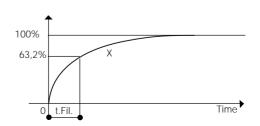
This value is the ratio between the cooling/heating proportional band

Fuzzy scale amplitude

It means the % of span where the Fuzzy logic operates.

Fuzzy derivative

This parameter inform the Fuzzy algorythm about the maximum process speed. (% of span)


Sampling time

It refers to the sampling time of the controller, (sec.s)

X1 input Time constant

Time Constant of the input RC filter applied on the process variable (X) input (sec.s).

Filter effects

Max speed for increasing of Y1 value Max speed for decreasing of Y1 value

It limits the increasing speed of Y1 output (output% / min. see note 3 page 23)

Functions and Parameters protection level code (See page 23)

0 = Off

 $1 = \Omega n$

Auto-Tune On/Off code

If the code "0" is entered, the function does not appear in the main menu.

> Serial comm.s code (see table on V° group)

Serial comm.s address

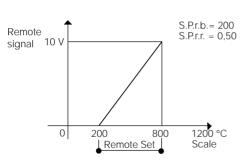
The address can be selected between 1 and 247

Scale beginning Set point lower limit

It limits the selection of the minimum Set point value.

Full scale Set point higher limit

It limits the selection of the maximum Set point value.


Remote Set point Bias

Starting point of analog remote Set point (eng. units). Selectable up to -100...+200% of range scale.

Remote Set point Ratio

It defines the remote Set point span (eng. units).

Example

Remote Set point span = span x S.P.r.r.

Minimum Y1 output value during control mode. This limit also operates in manual mode

Maximum Y1 output

Maximum Y1 output value during control mode. This limit also operates in manual mode

Maximum Y1▼ output

Maximum "cool" Y1 output value during the heating / cooling control mode. This limit also operates in manual mode

X1 Input shift

This function allows to shift the scale range within ±60 digits.

Y1 Output forcing value

Controller forces Y1 output to the selected value when the corresponding Logic input is active

Y1 output safety value

Controller forces the Y1 to the selected value in the under/overrange conditions

> Y2 output safety condition

Y3 output safety condition

Y4 output safety condition

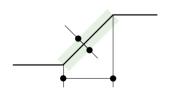
Y5 output safety condition

Controller forces the Y2, Y3, Y4 and Y5 alarms to the selected conditions in the under/overrange conditions (see table page 19)

7.1• Introduction

The programmable Set point version of QP series (e.g. QP..1) has been developed to build, memorize recall and carry out programmes. By the above it is possible to link a Set point change and time together.

7.2•


Main technical characteristics

- 16 programmes (max)
- Continuous or 1...9999 cycles (programme times)
- Seconds, minutes or hour time basis
- Duration or slope priority (in case of anomalies)
- Run, stop, hold, reset functions, etc. . These command are available by keyboard, logic input or serial comm.s.
- Up to 6 configurable time programmed logic outputs
- Auxiliary input for Programmes remote selection by the memorized ones (see page 7).

7.3•

Programme structure

The programme is composed by a set of connected segments. On each segment the configuration of the following parameters is possible:

- Target Set point ()
 Duration ()
 Necessary
 data
- Maximum deviation ()State of the 6 logic outputs
- Selection of the two available PID algorythm
- Programme composition
 1 Initial segment called
 1 Final segment called
 - 1 Final segment called1...99 standard segments

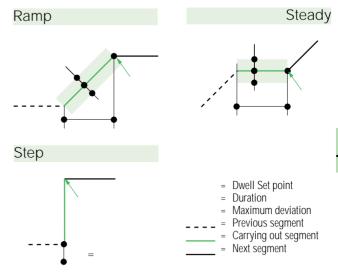
7.3.1•

Initial segment

By this segment the process reaches the expected starting condition of the real programme.

7.3.2•

Final segment


By this segment, the process variable can be positioned at a fixed value and state, after the programme end.

7.3.3•

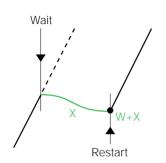
Standard segments

By these ones it is possible to set the real programme.

Three different types of segment can be set:

7.4

Working conditions


Prgm launch X Segment initial 1° Duration

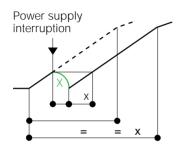
7.4.1 Programme launch with X (Pv) different from the Set point (Segment ()

The initial segment duration () is = or too short.

The real programme starts with the 1st segment with W (Sv)= X (Pv) to carry on the Process variable to the fixed Set point ().

The configured priority influences the controller behaviour.

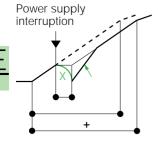
7.4.2. Programme restarts after a wait condition (from Manual mode or Local Set point mode


After the stop the programme restarts with W(Sv) = X(Pv)

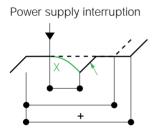
The configured priority influences the controller behaviour.

7.4.3 Programme restarts after a power supply interruption

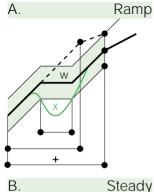
The configured priority influences the controller behaviour.

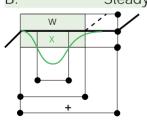

It can be applied during a ramp segment only.

A. Slope priority


- The ramp slope remains constant.
- At the end of the power supply interruption, the process variable reaches the programmed Set point value with the same previous ramp slope. The "slope" parameters do not influence the controller behaviour.
- The carrying out duration becomes

B. Duration priority

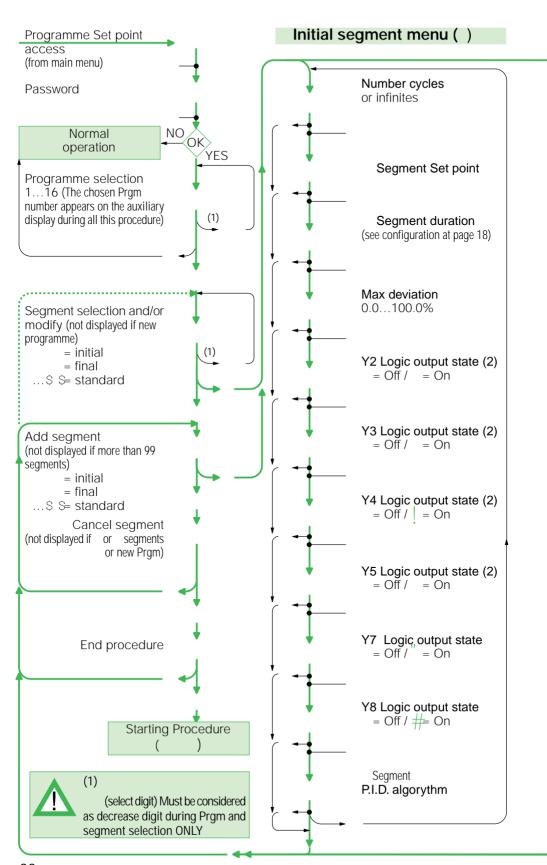

- The segment duration remains constant.
- At the end of the power supply interruption the process variable reaches the programmed Set point value with the previously entered "slope" parameter (up & down). If set correctly, it is possible to make up for the whole
- If not, the carrying out segment duration becomes



C•

Steady segment

- If the power supply interruption happens during a steady segment, the controller behaviour is equal for both priorities.
- At the end of the power supply interruption the process variable reaches the programmed Set point value with the previously entered "slope" parameter (if different from 0).
- The carrying out segment duration is



7.4.4 Out of Maximum deviation (

When process variable is greater than the entered "Maximum deviation" (), the time counting of carrying out segment goes to a stand-by condition, up to the process variable come back into the "Maximum deviation". The carrying out segment duration is

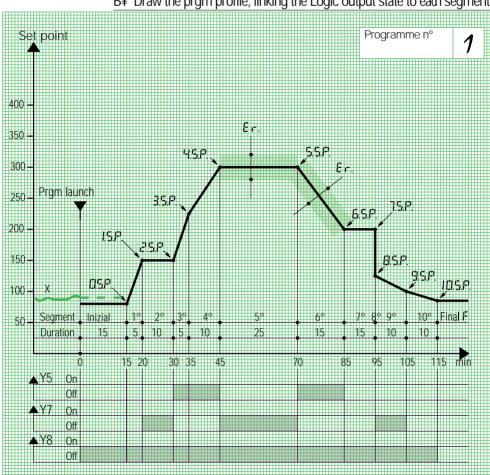
7.5•

Programme loading and/or modifying

For all segments: next segment select parameter

Final segment menu

Standard segment menu (...\$)

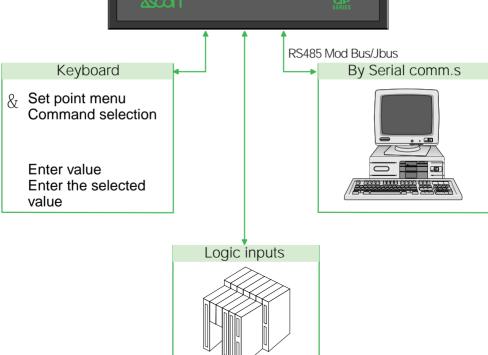


7.6•

PRGM Programming Guide

Α¥		Enter the f	ollo	wing data	, pre	eviously	selecte	ed during (Confiç	guration phase
	Segment duration	0 9999 sec [] 0	999,9 min		0 9999	min 🔽	0999,9 hc	urs	09999 hours
		Y2 State	1 Y:	3 State		Y4 State		Y5 State		Y7 Programma
	Logic Output	Y2 Max dev.] Y:	3 Max dev.	V	Y4 Max de	ev. 🔽	Y5 Max dev.		
		Y2 Programme] Y:	3 Programme	9	Y4 Progra	amme 🗌	Y5 Program	me 🗹	Y8 Programme 🗹

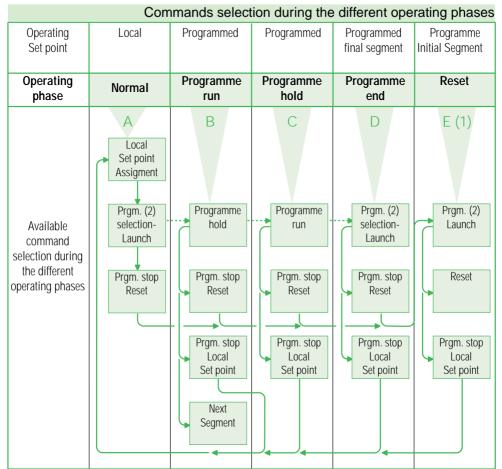
B¥ Draw the prgm profile, linking the Logic output state to each segment


C¥ Complete the herebelow table with the requested Prgm data

Description	N° of cycles	Set po	oint	Duration	Ma	x dev.	Outpo	ut Y2	Out	put Y3	Out	tput Y4	Outp	out Y5	Outp	out Y7	Out	out Y8	PIDa	algor.
range.	09999				0,0	.100,0%					() = Off	/ 1=	On					10	02
Cod./n° seg.	Pr.E.S.	0	SP.	الدائد		Еr.		92		93		99		95		97		98		PR.
Initial		0	80	[] 15		100.0	0	0	0	0	0	0		0	0	0	0	1	0	1
Final		F	82				F	0	F	0	F	0	F	0	F	0	F	1	F	1
1°		1 :	150	1 5	- 1	100.0	-1	0	-1	0	-1	0	- 1	0	- 1	0	1	1	- 1	1
2°		8 3	150	2 10	2	100.0	2	0	ē	0	г	0	2	0	2	0	2	1	8	1
3°		3 2	225	3 5	3	100.0	3	0	3	0	3	0	3	0	3	0	3	1	3	1
4°		4 3	300	4 10	4	100.0	4	0	4	0	4	0	4	0	4	0	4	1	4	2
5°		5 3	300	5 25	5	3,0	5	0	5	1	5	0	5	0	5	1	5	1	5	2
6°		E 2	200	E 15	Б	3,0	Б	0	Б	0	Б	1	Б	1	Б	0	6	1	Б	2
7°		7 2	200	7 10	7	100.0	7	0	7	0	7	0	7	0	7	0	7	1	7	1
8°		8 :	125	8 0	8	100.0	8	0	8	0	8	0	8	0	8	0	8	1	8	1
9°		9 1	100	9 10	9	100.0	9	0	9	0	9	0	9	0	9	0	9	1	9	1
10°		10	82	10 10	10	100.0	10	0	10	0	10	0	10	0	10	0	10	1	10	1

Command selection and operating phases

The Command selection can be done by 3 different ways:



see page 36

The command selection depends on the operating phases.

The 5 available phases are the following:

- A Local Set point mode
- B Programme run mode
- C Programme hold mode
- D Programme end (final segment) mode
- F Reset mode

To better understand the meaning of the above flow chart, the operating phases have been shown in a sequence way. For modifying procedure and command activation please see the herewith enclosed. Operating Instructions sheet (Chapter 8.3 Set point Menu for Programmable Set point version).

Notes

- 1) After the programme stop; the controller goes to a specific mode: Reset condition, ready to start with the segment of the programme.
- 2) During the above phases the programme can be selected if it has not already done by the auxiliary input (see page 7).

Logic inputs IL1, IL2, IL3

Each logic input can be freely configured to perform one of the available functions during the proper configuration phase. An external logic signal shall be of the maintained type. The following type of logic inputs can be accepted to do this: isolated contact, NPN o.c. or TTL o.c. outputs. The function is operating when the logic input is "ON", while the logic input is "OFF" when the function must be inhibited.

"ON" logic inputs have the priority with respect to the keyboard and Serial comm.s controls.

Func	tion	Code	Logic inp	out state	Notes
Nisasa			Off _• ~ _	On	
None					
Manu	al control		AUTO	MAN	
Locke	d keyboard	"	UNLOCK	LOCK	Logic and Serial comm.s controls can be used during lock condition 2nd PID algorythm
Y1 for	cing value		Std mode	Active	
_	1st memorized Set point.		Local Set point	Active	If more than one logic input are
Standard Set point version	2nd memorized Set point.		Local Set point	Active	simultaneously ON, the last request will
Standard point vers	3rd memorized Set point	!	Local Set point	Active	be operating
tanc	Remote Set point		Local Set point	Active	3
S et p	2nd PID algorythm	#	1st PID set	Active	
S	Y1=Remote Set point input	\$	Std mode	Active	
		<u> </u>	Remote Set point	Active	Standard Set point version
	Local Set point (1)	,	Prgm Set point		Programmable Set point version (when local mode, it stop the programme carrying out)
	Programme launch/stop		STOP	LAUNCH	If ON condition is maintained the prgm runs to the end. If during the programme the condition changes (OFF) the controller switches on Prgm stop - Reset condition
sion	Programme run/hold		HOLD	RUN	If ON condition is maintained the prgm runs to the end. If during the programme the condition changes (OFF) the controller switches on Prgm Hold condition
Programmable Set point version	Programme launch + run / hold	!	HOLD	LAUNCH RUN	OFF condition holds the programme With ON the programme runs when: - Local mode - Final segment of another Prgm -after Hold condition (OFF)
nmable	Programme Reset			RESET	When ON during the programme carrying out, the controller switches on Prgm stop - Reset condition
Prograi	Hold (to Local Set point)	,	RUN	HOLD	When ON during the programme carrying out, the controller switches on Hold condition. With OFF the Prgm runs again.
	Next segment	"		OK	When ON , the programme goes to the beginning of th next segment
	Reset	#	+	OK	The ON condition resets the segment time, during the steady segment type only. It causes a new start of the same segment from the beginning

¹⁾ When the controller works on Local mode, the logic inputs (associated to the programme) are inhibited.

•0.8

8.1•

8.2•

8.3•

8.4•

Funct

menu
Modification of a
ric field
Standard Set pc
menu
Prgm Set point menu
Auto Man

9

TECHNICAL DATA

_
_

Features at env. 25°C		De	scription	
Total configurability			d menu, you can choos outs, Set points and ins	e, in sequence: ert all control parameters.
Operational mode	1 Loop with single/doo	uble output		
	Algorythm	On-Off, P.I.D., PID + FIP PID " with "three point		
	Proportional Band (P) Integral time (I) Derivative time (D) FUZZY intensity	0.5£999.9% 0.0£100.0 min 0.00£10.00 min 0.0£90.0%	- Escludable	
Control mode	Balance output shift	0É100%	For P. and P.D. algoryt	:hm
	Cycle time	1É200 sec.	For discontinuous out	
	Hysteresis	0.01É10.00%	For On-Off algorythm	
	Dead zone	0.0É5.0%	5 515 1 11 1	
	Cool Relative gain	0.1É3.0	For PID algorythm to double action (heat-co	
	Valve stroke time	15É600 sec		
	Output dead zone	0.1É10.0%	For servomotors outpo	ut
	Potentiometer	100ΩΕ΄10Κ Ω		
	Common characteristics	A/D converter with 50. Sampling time: 0.5 to Input shift: -60£+ 60 di Input filter: 0£30 sec.s	30.0 sec. configurable gits	
	Accuracy	0.2% ± 1 digit (T/C, R 0.1% ± 1 digit (mA e '		Between 100£240V ac, error is irrelevant
Input measure X1 (see page 18)	Thermoresistance	Pt100 Ω a 0 °C (IEC 751) With °C/°F/°K selection	2 or 3 wires connections	Line: 20Ω max (3 wires) Thermal drift: 0.1° C/10 $^{\circ}$ C env. T. < 0.5° C/10 Ω line R.
	Thermocouple	L,J,T,K,R,S,B,N,E,W (IEC 548) With °C/°F/°K selection	Internal or external cold joint compensation in °C/°F/K	Line: 150Ω max Thermal drift: $<2\mu$ V/°C.env. T. $<5\mu$ V/ 10Ω line R.

Features at env. 25°C		De	escription
Remote Set point (Not available with	Non isolated	Current: 0-20mA, 4-20mA Ri = 30 Ω	Bias in engineering units (-100% + 200%) (compatible with display)
programmed Set point option)	Accuracy 0.1%	Voltage: 1-5V, 0-5V, 0-10V Ri = 300 kΩ	Ratio from -9.99£ + 10.00 Sum Local Set point + Remote Set point
Programmed Set point (Option)	From 1 to 9999 repet Time base configurat Priority of duration or Up to 6 logic outputs Selection between the Auxiliary voltage inpu	itions / program or infli ole in seconds, minutes solope (in case of anome and ologic inputs, proge a 2 available sets of PIC at for selecting the prog	s, hours. nalies). grammable and related to the program. O parameters for each segment.
Auto-tune		ncy", method, Tuning ca th launch enabling inde	n occur at a Set point change or during process ex.
Auto-Man station	Incorporated, with Bu Auto-Man transfer via		and serial communications
Serial Comm.s (option)		us protocol, 1200,2400 te or supervision syste	0,4800,9600 bit/sec., 2 wires m local mode)
Auxiliary power supply	24 Vdc ± 10%, 50 m/ Up to 2 external transr	A max mitters (2, 3 o 4 wires c	connection)
ромен зарргу	Main input		vare failure (short or open circuit) outputs are
Operational	Control output	Settable security value	
security	Auxiliary outputs	Security status can be	e configured: excluded, N.O. or N.C.
	Parameters	in non volatile memor Subdivided into 5 hor	are saved for unlimited time ry. mogeneous groups, configurable as: e, visible or not modifiable, invisible.
	Access keys		sing the V° group of parameters, to programming t point and for the configuration
	Power supply	100É 240V, 50/60 H 16É 28V, 50/60 Hz e Absorbed power 5VA	
General features	Electric safety	EN61010, installation pollution level 2	category II° (2500V),
	Electromagnetic compatibility Environmental	According to norms r for systems and indus	
	Protection according to DIN40050	P 20 (terminal block)	, P 30(case), IP54 (front panel) 135-2A101, material guard UL 94 V11
		DIN, depth: 154.5 mm,	

						PRGN		_		
\¥		Enter the	followin	g data,	previous	sly selec	ted duri	ing Cont	figuratio	n phas
Seg	gment duration	on 0É9999 sec.s	_	9 min.	0É9999			,9 hours		
١.		Y2 State	Y3 St		Y4 Sta	-	Y5 Stat	_	Y7 Pro	gramme
Γοί	gic Output	Y2 Max der. Y2 Programme		ax der. [ogramme[Y4 Ma	ogramme[Y5 Max	x uei. ∟ gramme[□ VΩ Dro	gramme
		B¥ Draw				the loa			o each s	<u>oamer</u>
A	Set point	D+ Diaw	uic pigi	ii pronic	, III IKII IY	inc log	ic outpu	ii state t	Caurs	cyrrici
							F	Programr	ne n°	
								3		
	10									
*)	(2									
4)	/2									
	10									
	74									
*)										
1) 1)										
1	75									
	75									
<u>^</u>	75 77									
1	75 77									
<u>^</u>	75 77									
*\ *\	75 77		Com	olete the	e herebe	low tabl	e with th	ne reque	ested Pr	gm da
1) 1) 1)	75 77 78	Set point Duration		olete the						
¥_ escription	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration		Output Y2		low tabl Output Y4 0 = Off /	OutputY5			
¥ escription nge od/n° seg.	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge od./n° seg.	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge od./nº seg.	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge od./nº seg. nitial inal	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escriptior nge od./nº seg. itital nal	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge add/n° seg.	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge edun's seguitital inal	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge eduring seguitital inal	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge adur's seg.	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge escription nal	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription and resulting in all result	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription initial	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription initial	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge sittal inal co co co co co co co co co c	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge sitial columns co	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription one of the segretary of t	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription one of the segretary of t	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ Escription Rescription Res	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge o o o o o o o o o o o o o o o o o o o	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo
¥ escription nge od/nº seg. initial inial o o o o o o o o o o o o o o o o o o o	75 77 78 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Set point Duration	Max der.	Output Y2		Output Y4	OutputY5			PID algo

The equipment is guaranteed free from manufacturing defects for 1 year after installation, for a maximum of 18 month after delivery.

Faults caused by use other than that described in the operating instructions are excluded from the guarantee.

CE conformity

We declare that this instrument is in conformity with the following Standards for Industrial environment:

EN 50081-2	Electromagnetic compatibility Generic emission standard
EN 50082-2	Electromagnetic compatibility Generic immunity standard
EN 61010	General safety requirements for electrical equipments