Operating Manual Conductivity measuring instrument

GLF 100

from Version 1.2

WEEE - Reg. Nr. DE 93889386

Made in Germany

D - 93128 Regenstauf, Hans-Sachs-Straße 26
phone: +49 9402 / 9383-0, fax: +49 9402 / 9383-33, eMail: info@greisinger.de
CONTENT

1. Intended use... 3
2. General advice .. 3
3. Safety instructions ... 3
4. Operation and Maintenance .. 3
5. Disposal notes .. 4
6. Display elements .. 4
7. Pushbuttons .. 4
 7.1 Min-/max-value memory .. 4
 7.2 Hold – function ... 4
8. Configuration of the instrument .. 5
9. Adjusting of the instrument ... 6
10. System Messages ... 6
11. Inspection of the accuracy / Adjustment Services .. 6
12. General information about conductivity measuring ... 7
 12.1 The Conductivity Measuring Cell ... 7
 12.2 Measuring hints ... 7
 12.3 Measuring procedure: ... 7
 12.4 Temperature compensation .. 7
13. Specification .. 8

© Copyright 2008 GREISINGER electronic GmbH. All Rights Reserved.
No part of this documentation may without previous written permission of the company GREISINGER electronic GmbH stored in some form, reproduced, processed, duplicated or spread become.
1 Intended use
Precise measurements of conductivity in pure water applications

Applications
- Fresh and seawater aquaristics
- Fish farming
- Drinking water monitoring
etc.

2 General advice
Read through this document attentively and make yourself familiar to the operation of the device before you use it. Keep this document in a ready-to-hand way in order to be able to look up in the case of doubt.

3 Safety instructions
This device has been designed and tested in accordance to the safety regulations for electronic devices.
However, its trouble-free operation and reliability cannot be guaranteed unless the standard safety measures and special safety advises given in this manual will be adhered to when using it.

1. Trouble-free operation and reliability of the device can only be guaranteed if it is not subjected to any other climatic conditions than those stated under “Specification”.
2. Transporting the device from a cold to a warm environment condensation may result in a failure of the function. In such a case make sure the device temperature has adjusted to the ambient temperature before trying a new start-up.
3. The circuitry has to be designed most carefully if the device should be connected to other devices. Internal connection in third party devices (e.g. connection GND and earth) may result in not-permissible voltages impairing or destroying the device or another device connected.
4. Whenever there may be a risk whatsoever involved in running it, the device has to be switched off immediately and to be marked accordingly to avoid re-starting. Operator safety may be a risk if:
 - there is visible damage to the device or the device is not working as specified
 - the device has been stored under unsuitable conditions for a longer time
In case of doubt, please return device to manufacturer for repair or maintenance.
5. Warning: Do not use this product as safety or emergency stop device, or in any other application where failure of the product could result in personal injury or material damage. Failure to comply with these instructions could result in death or serious injury and material damage.

4 Operation and Maintenance
- If the symbol "BAT" is displayed at the left side of display, the battery is weak, measuring can be continued for a short period. If “bAt” is displayed in the main display the battery is used up and needs to be replaced. Measuring is no more possible.
- The battery has to be removed, when storing device above 50 °C.

Hint: We recommend removing the battery if device is not used for a longer period of time! Risk of Leakage
- Treat device and probes carefully. Use only in accordance with above specification. (do not throw, hit against etc.). Protect from soiling.
- After switching on the instrument a segment test (all segments) is displayed, followed by “P.off”, if auto power off function is activated (please refer to configuration)
5 Disposal notes
Dispense exhausted batteries at destined gathering places.
This device must not be disposed as “residual waste”.
To dispose this device, please send it directly to us (adequately stamped).
We will dispose it appropriately and environmentally friendly.

6 Display elements

1. BAT Indicates low battery
2. Measurement display Consider additional arrows and symbols in display!
3. Unit arrows TDS measurement in mg/l or conductivity measurement in µS/cm or mS/cm or Salinity
4. nLF Non linear temperature compensation is active
5. HLD Measure value is “frozen”

7 Pushbuttons

on/off
Press long: off;
Press short: Show temperature

mode
Choose between measuring value / Min value / Max value
press 2s: reset Min and Max value

hold:
Hold current measuring value (“HLD” in display)

7.1 Min-/max- value memory
The lowest and highest measured value since the turning-on of the device will be stored.
The stored values consist of a pair of values, the conductivity, and the associated temperature.

Watch Min value (Lo): press shortly key mode once display changes between “Lo” and Min value
Watch Max value (Hi): press shortly mode once again display changes between “Hi” and Max value
Restore current value: press shortly mode once again current value of the chosen unit is displayed
Delete Min / Max-value: press mode for 2 sec. Min and Max values will be deleted, the display shows shortly “CLR” (clear)

After switching off and turning on again all Min- / Max-values will be deleted.

7.2 Hold – function
When the hold key is pressed, the current measured value will be “frozen” (display symbol: HLD) until the key is pressed again. Then the device will measure in its normal way again.
8 Configuration of the instrument

- To configure the instruments according to Your needs proceed like follows:
 - Switch off instrument.
 - Press hold-key and keep button pressed. Switch on. After the segment test (the display shows the first parameter “P_oF”)
 - If a parameter should be edited, press key up or down (), the setting of the parameter will be shown and can be changed via up/down keys and receipt the changed parameter with.
 - Jump to the next parameter with.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Auto Power-Off</td>
<td>factory setting: 20 min.</td>
<td>Auto Power-Off in minutes. If there won’t be pressed any key for the time of the power off time setting, the device will be switched off automatically to save battery power (adjustable range 1 to 120 min)</td>
</tr>
<tr>
<td>Key Unit and range of display</td>
<td>factory setting: Auto</td>
<td>Measuring of conductivity with auto-range</td>
</tr>
<tr>
<td>Key Unit of temperature display</td>
<td>factory setting: °C</td>
<td>Temperature is displayed in °C (factory setting)</td>
</tr>
<tr>
<td>Key Temperature compensation (only for µS/cm and mS/cm, p.r.t. note below)</td>
<td>factory setting: nLF</td>
<td>Measuring of conductivity, range 0.00 ... 100.0 mS/cm (no auto-range)</td>
</tr>
<tr>
<td>Key Reference temperature of temp. compensation (only for t.Cor <> oFF)</td>
<td>factory setting: 25 °C</td>
<td>Reference temperature 25 °C / 77 °F</td>
</tr>
<tr>
<td>Key Setting of TDS-factor</td>
<td>factory setting: 0.40</td>
<td>Setting of factor of the TDS measurement</td>
</tr>
<tr>
<td>Key Restore to factory settings</td>
<td></td>
<td>Settings are kept</td>
</tr>
<tr>
<td>YES</td>
<td>Restoring device to factory settings</td>
<td></td>
</tr>
</tbody>
</table>

Pressing again stores the settings, the instruments restarts (segment test)

Please note: If there is no key pressed within the menu mode within 2 minutes, the configuration will be cancelled, the entered settings are lost!

Note for temperature compensation: To measure the TDS value always use non-linear temperature compensation for natural water (reference temperature = 25 °C).
To measure salinity the instrument automatically switches over to the non-linear temperature compensation acc. to IOT (reference temperature = 15 °C).
9 Adjusting of the instrument

The cell correction may change due to natural ageing or deposits at the measuring cell. In case you have an accurate reference liquid, you may adjust the instrument by changing the cells scale correction accordingly.

The temperature measuring is very stable and has to be adjusted in very seldom cases only.

To adjust the instruments according to Your needs proceed like follows:

- Switch off instrument.
- Press hold-key and keep button pressed. Switch on. After the segment test (Example), the display shows the first parameter “SCL”
- If a parameter should be edited, press key up or down (Example), the setting of the parameter will be shown and can be changed via up/down keys and receipt the changed parameter with key.
- Jump to the next parameter with key.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL</td>
<td>0.800...1.200</td>
<td>Scale correction of measuring cell</td>
</tr>
<tr>
<td>Offset</td>
<td>-2.0…2.0 °C</td>
<td>Offset setting of temperature measurement (see below)</td>
</tr>
<tr>
<td>SCL T</td>
<td>-5.00…5.00 %</td>
<td>Scale adjustment of temperature measurement</td>
</tr>
</tbody>
</table>

Pressing again stores the settings, the instruments restarts (segment test)

Please note: If there is no key pressed within the menu mode within 2 minutes, the adjusting will be cancelled, the entered settings are lost!

10 System Messages

Er. 1 = measuring range has been exceeded
-- = Sensor Error
Er. 7 = System fault - the device has detected a system fault (defective or far outside allowable ambient temperature range)

If "BAT" is displayed at the left side of display, the battery is weak, measuring can be continued for a short period.
If “bAt” is displayed in the main display the battery is used up and needs to be replaced. Measuring is no more possible.

11 Inspection of the accuracy / Adjustment Services

Accuracy can be inspected with test-solutions (extra equipment).

If the precision is not more within the admissible range, we suggest to send the device to the manufacturer for a new adjustment.
12 General information about conductivity measuring

12.1 The Conductivity Measuring Cell

During the measurement, the conductivity measuring cell must be dipped at least in so far, that at least 30 mm beginning from the top of the measuring cell, is located in the medium. The maximum immersion depth for continuous operation should not exceed 110 mm.

The measuring cell can either be stored dry or in water. After dry storage wetting time will be prolonged slightly. If changing over from one liquid to another with conductivities varying widely make sure to properly rinse and shake dry measuring cell.

Attention: Measuring cell must never come into contact with water-repellent materials such as oil or silicone.

If conductivity measured is much higher or lower than expected this may be due to the electrode being soiled with non-conducting or conducting foreign materials. Measuring cell has to be cleaned with a watery soap solution.

When measuring media with low conductivities the electrode has to be stirred sufficiently.

12.2 Measuring hints

Conductivity measuring is comparably easy to perform, the precision of the instrument is very constant if it is used as intended. Depending on the necessary accuracy the instruments can be used up to several years without recalibration of the cell constant.

If the accuracy should be controlled or improved, this is done by means of suitable reference solutions and the adjusting of the cell factor.

Attention! Wrong handling of reference solution can make them useless very fast.

12.3 Measuring procedure

Especially when measuring low conductivity: Before immersion to the measuring solution, rinse the electrode with deionised water, dry with a paper towel and shake remaining water out.

The measuring is speeded up considerably, if the electrode is immersed and pulled out the solution several times.

Especially when measuring low conductivity the electrode needs sufficient flow during the measuring, e.g via stirring the solution.

When temperature compensation is activated, the electrode needs enough time to adjust to the actual temperature of the measuring solution to work accurate.

12.4 Temperature compensation

The conductivity of aqueous solution is temperature dependent. The dependency itself is strongly dependent on the kind of solution. For the most applications e.g. in fish farming etc., the non linear temperature compensation of natural waters is precise (“nLF” according to EN 27888). The most common reference temperature is 25 °C.
13 Specification

Measuring

Principle Conductivity measuring via 2 pole graphite electrode

<table>
<thead>
<tr>
<th>Meas. Ranges</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity</td>
<td>0 ... 2000 µS/cm</td>
</tr>
<tr>
<td>TDS</td>
<td>0 ... 1999 mg/l</td>
</tr>
<tr>
<td>Salinity</td>
<td>0.0 ... 50.0 g/kg</td>
</tr>
<tr>
<td>Temperature</td>
<td>-5.0 ... 100.0 °C</td>
</tr>
</tbody>
</table>

Electrode 2 pole graphite electrode, integrated temperature sensor
Electrode material: special graphite
Dimensions: dia. 12 mm, length 120 mm, min immersion depth 30 mm
Cable length ca. 1.2 m

Accuracy ±1 Digit (at nominal-temperature)

Conductivity	±0.5 % of m.v. ±0.5 % FS
TDS, Salinity	±0.5 % of m.v. ±0.5 % FS
Temperature	±0.3 K

T.-compensation non-linear temperature compensation according to EN 27888, reference temperatures 20 °C and 25 °C

Nominal temperature 25 °C

Ambient Temperature instrument -25 ... +50 °C
Temperature cell -5 ... +80 °C (short time 100 °C)
Relative humidity instrument 0 ... 95 %RH (non condensing)

Storage temperature -5 ... +50 °C

Housing Dimension: 110 x 67 x 30 mm (H x W x D)
impact resistant ABS, membrane keyboard, transparent panel
Front side IP65

Weight approx. 155 g

Power Supply 9V-Battery, typ 6F22 (zinc-carbon battery included)
Operating time with zinc-carbon battery >200 hours

Power Consumption <1.5 mA

Display ca. 11 mm high, 4½-digit LCD display with additional segments

Pushbuttons 3 membrane keys for on/off switch, menu operation, min / max/ hold function etc.

Hold Function Press key to store current value.

Automatic-Off-Function Device will be automatically switched off if not operated for longer time (adjustable from 1...120 min)

EMC: The device corresponds to the essential protection ratings established in the Directives of the European Parliament and of the council on the approximation of the laws of the member states relating to the electromagnetic compatibility (2004/108/EC). EN 61326 +A1 +A2 (Appendix B, class B), additional error: < 1% FS.